Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Distributor

ams technologies

where technologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

TOPTICA

General Product Information

Product	Application
765 nm Tapered Amplifier	Spectroscopy
C-Mount Package	Metrology

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	Ts	°C	-40		85
Operational Temperature at Case (non cond.)	T _C	°C	0		50
Forward Current	١ _F	А			3.3
Reverse Voltage	V _R	V			0
Output Power	P _{opt}	W			1.6

Recommended Operational Conditions

Symbol	Unit	min	typ	max
T _C	°C	5		40
I _F	А			3.0
P _{input}	mW	10		50
P _{opt}	W			1.5
	T _C I _F P _{input}	T _C °C I _F A P _{input} mW	T _C °C 5 I _F A P _{input} mW 10	T _c °C 5 I _F A P _{input} mW 10

Characteristics at T_{LD} = 25 °C at BOL

Symbol	Unit	min	typ	max
λ_{C}	nm		765	
Δλ	nm		6	
dλ / dT	nm / K		0.25	
I _{op Gain}	А			3.0
P _{opt}	W	1.5		
G	dB		15	
L _C	μm		2750	
	λ _c Δλ dλ / dT I _{op Gain} P _{opt}	$\begin{array}{c c} \lambda_{c} & nm \\ \hline \Delta\lambda & nm \\ d\lambda / dT & nm / K \\ \hline I_{op \ Gain} & A \\ \hline P_{opt} & W \\ \hline G & dB \\ \hline \end{array}$	$\begin{array}{c c} \lambda_{c} & nm \\ \hline \lambda_{c} & nm \\ \hline \Delta\lambda & nm \\ \hline d\lambda / dT & nm / K \\ \hline I_{op \ Gain} & A \\ \hline P_{opt} & W & 1.5 \\ \hline G & dB \\ \hline \end{array}$	$\begin{array}{c cccc} \lambda_{\rm C} & {\rm nm} & 765 \\ \hline \lambda_{\rm C} & {\rm nm} & 6 \\ \hline \Delta\lambda & {\rm nm} & 6 \\ \hline d\lambda / dT & {\rm nm} / {\rm K} & 0.25 \\ \hline l_{\rm op \ Gain} & {\rm A} \\ \hline P_{\rm opt} & {\rm W} & 1.5 \\ \hline {\rm G} & {\rm dB} & 15 \\ \hline \end{array}$

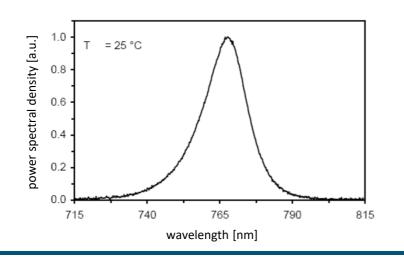
Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments
non condensing
with proper injection from a seed laser

Measurement Conditions / Comments

with proper injection from a seed laser		e images on page 4
	ed laser	th proper injection fr


Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Symbol R _{ff}	Unit	min	typ	
R _{ff}				max
			3.10-4	1.10-3
R _{rf}			3.10-4	1.10-3
d _{in}	μm		3	
d _{out}	μm		190	
А	μm	500	600	700
$\Theta_{\text{in} }$	0		t.b.d.	
$\Theta_{\text{in}\perp}$	0		t.b.d.	
$\Theta_{\text{out} }$	0		14	
$\Theta_{\text{out}\perp}$	0		33	
M ²				
			TM	
	d _{in} d _{out} A $\Theta_{in }$ $\Theta_{out} $ $\Theta_{out }$	$\begin{array}{c c} d_{in} & \mu m \\ d_{out} & \mu m \\ \hline A & \mu m \\ \hline \Theta_{in} & \circ \\ \hline \Theta_{in\perp} & \circ \\ \hline \Theta_{out} & \circ \\ \hline \Theta_{out\perp} & \circ \\ \end{array}$	$\begin{array}{c c} d_{in} & \mu m \\ \hline d_{out} & \mu m \\ \hline A & \mu m & 500 \\ \hline \Theta_{in} & \circ \\ \hline \Theta_{in\perp} & \circ \\ \hline \Theta_{out} & \circ \\ \hline \Theta_{out\perp} & \circ \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Typical Measurement Results

Spectrum measured w/o injection

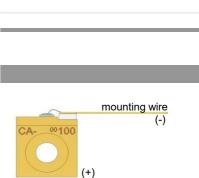
Measurement Conditions / Comments depending on operating conditions E field perpendicular to junction plane

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

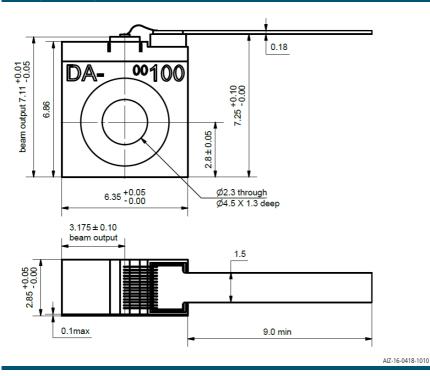
2017-11-22

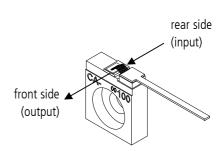
Revision 0.91


TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Package Dimensions						
Parameter	Symbol	Unit	min	typ	max	Measurement Conditions / Comments
Height of Emission Plane	h	mm	7.10	7.15	7.20	
C-Mount Thickness	t	mm		2.80		

Package Pinout


Mounting Wire Housing


Cathode (-) Anode (+)

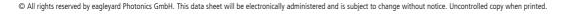
heat spreader

Package Drawings

Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Unpacking, Installation and Laser Safety


Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks willl contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Distributor

....

amstechnologies

where technologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

 \mathcal{P}

Contact us

TOPTICA

General Product Information

Product	Application
780 nm Tapered Amplifier	Spectroscopy
C-Mount Package	Metrology

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	Ts	°C	-40		85
Operational Temperature at Case (non cond.)	T _C	°C	0		50
Forward Current	I _F	А			3.3
Reverse Voltage	V _R	V			0
Output Power	Popt	W			1.2
Output Power	P _{opt}	W			

Recommended Operational Conditions

Symbol	Unit	min	typ	max
T _C	°C	5		40
I _F	А			3.0
P _{input}	mW	10		50
P _{opt}	W			1.0
	T _C I _F P _{input}	T _C °C I _F A P _{input} mW	T _C °C 5 I _F A P _{input} mW 10	T _c °C 5 I _F A P _{input} mW 10

Characteristics at T_{LD} = 25 °C at BOL

Parameter	Symbol	Unit	min	typ	max
Design Wavelength	λ _c	nm		780	
Gain Width (FWHM)	Δλ	nm		20	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.3	
Operational Current $@ P_{opt} = 1.0 W$	I _{op Gain}	А			3.0
Output Power	P _{opt}	W	1.0		
Amplification	G	dB		20	
Cavity Length	L _C	μm		2750	

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

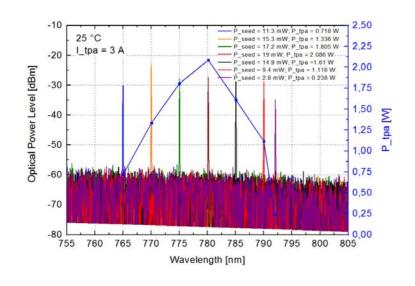
Measurement Conditions / Comments
non condensing
with proper injection from a seed laser

Measurement Conditions / Comments

with proper injection from a seed laser	
at recommended maximum forward current	

Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Characteristics at T _{LD} = 25 °C	at BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Reflectivity at Front Facet	R _{ff}			3.10-4	1.10-3
Reflectivity at Rear Facet	R _{rf}			3.10-4	1.10-3
Input Aperture (at rear side)	d _{in}	μm		3	
Output Aperture (at front side)	d _{out}	μm		190	
Astigmatism	А	μm		600	
Input Divergence parallel (1/e ²)	$\Theta_{\text{in} }$	o		23	
Input Divergence perpendicular (1/e ²)	$\Theta_{\text{in}\perp}$	0		41	
Output Divergence parallel (1/e ²)	$\Theta_{\text{out}} $	0		20	
Output Divergence perpendicular (1/e ²)	$\Theta_{\text{out}\perp}$	o		41	
Beam quality factor	M ²				
Polarization				TM	

estimated at recommended maximum forward current

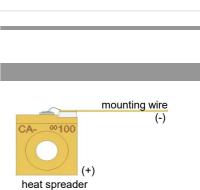
E field perpendicular to junction plane

Measurement Conditions / Comments

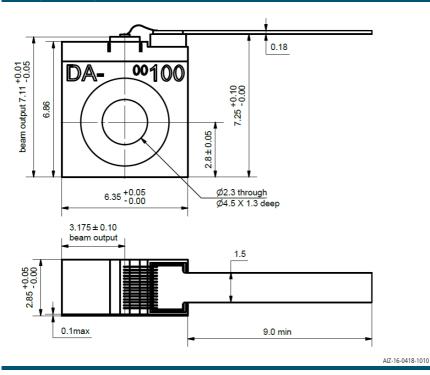
Typical Measurement Results

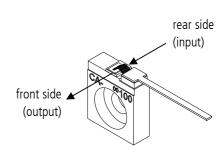
Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Revision 0.91


TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Package Dimensions						
Parameter	Symbol	Unit	min	typ	max	Measurement Conditions / Comments
Height of Emission Plane	h	mm	7.05	7.10	7.20	
C-Mount Thickness	t	mm		2.80		


Package Pinout


Mounting Wire Housing

Cathode (-) Anode (+)

Package Drawings

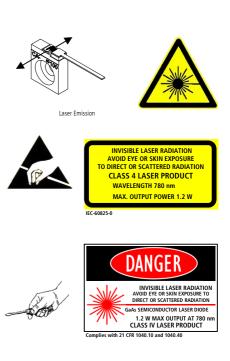
Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks willl contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.


The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Distributor

amstechnologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

TOPTICA

Contact us 🕅

General Product Information

Product	Application
780 nm Tapered Amplifier	Spectroscopy
14 Pin Butterfly Package (non hermetic)	
with PM Fiber and FC/APC Connector (Input)	
and collimated Output Beam	

Absolute Maximum Ratings

Symbol	Unit	min	typ	max
Ts	°C	-40		85
T _C	°C	15		35
T _{chip}	°C	15		35
I _F	А			5
V _R	V			2
P _{opt}	W			3.2
	T _s T _c T _{chip} I _F V _R	$T_{s} \circ C$ $T_{chip} \circ C$ $I_{F} A$ $V_{R} V$	$\begin{array}{c c} T_{s} & ^{\circ}C & -40 \\ \hline T_{c} & ^{\circ}C & 15 \\ \hline T_{chip} & ^{\circ}C & 15 \\ \hline I_{F} & A \\ \hline V_{R} & V \end{array}$	T_s°C-40T_c°C15 T_{chip} °C15 I_F A V_R V

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	15		50
Operational Temperature at Chip	T _{chip}	°C	15	25	35
Forward Current	I _F	А			4.5
Input Power	P _{input}	mW	10		80
Output Power	P _{opt}	W			3

Characteristics at T_{chip}

λ_{c}	nm		780	
			780	
Δλ	nm		20	
d λ / dT	nm / K		0.3	
I _{op Gain}	А			4.5
P _{opt}	W	3.0		
G	dB		23	
	dλ / dT I _{op Gain} P _{opt}	dλ / dT nm / K I _{op Gain} A P _{opt} W	dλ / dT nm / K I _{op Gain} A P _{opt} W 3.0	dλ / dT nm / K 0.3 I _{op Gain} A P _{opt} W 3.0

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments	
non condensing	
with proper injection from a seed laser	

Measurement Conditions / Comments
P_{opt} = with proper injection from a seed laser
at recommended maximum forward current

Revision 0.70

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Characteristics at T _{chip}					cont'd
Parameter	Symbol	Unit	min	typ	max
Beam Diameter horizontal	d _{out}	mm		1	
Beam Diameter vertical	d _{out⊥}	mm		1	
Output Divergence parallel	Θ_{out}	mrad		3	
Output Divergence perpendicular	$\Theta_{\text{out}\perp}$	mrad		3	
Polarization				TM	

Measurement Conditions / Comments
Weasurement Conditions / Comments
E field perpendicular to base plate

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А			2.5
Voltage	U _{TEC}	V			5
Power Dissipation (total loss at case)	Ploss	W		10	
Temperature Difference	ΔΤ	К			20

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	С			8.7755 x 10	-8

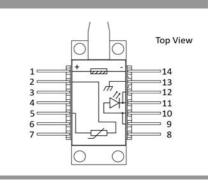
$\label{eq:conditions} \begin{array}{c} \mbox{Measurement Conditions / Comments} \\ \hline $T_{Chip} = 25^{\circ} \ C$ \\ \hline $R_1 / R_2 = e^{\beta (1/T_1 + 1/T_2)} $ at $T_{LD} = $ 0^{\circ} $ \dots $50^{\circ} \ C$ \\ \hline $1/T = A + B(ln \ R) + C(ln \ R)^3$ \\ \hline \end{array}$

Measurement Conditions / Comments

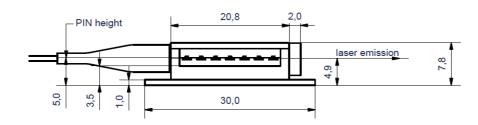
 $\begin{array}{ll} \mathsf{P}_{opt} = & 3 \ \mathsf{W} \\ \mathsf{P}_{opt} = & 3 \ \mathsf{W} \\ \mathsf{P}_{opt} = & 3 \ \mathsf{W} \\ \mathsf{P}_{opt} = & 3 \ \mathsf{W} \end{array}$

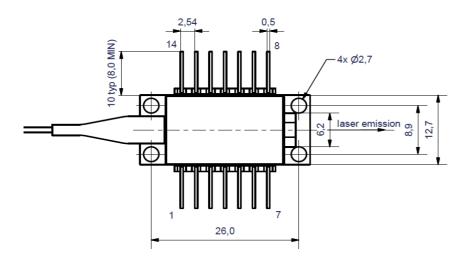
T: temperature in Kelvin R: resistance at T in Ohm 2022-01-10

Revision 0.70


TOPTICA

2022-01-10


TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	not connected	12	Amplifier (Cathode)
4	not connected	11	Amplifier (Cathode)
5	Thermistor	10	Amplifier (Anode)
6	not connected	9	Amplifier (Anode)
7	not connected	8	not connected

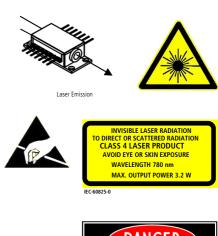
Package Drawings

Caution. Excessive mechanical stress on the package can lead to a damage of the device. See <u>instruction manual</u> on www.toptica-eagleyard.com

Revision 0.70

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Unpacking, Installation and Laser Safety


Unpacking the taperd amplifier should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

This amplifier is designed for the setup of MOPA systems. Appropriate seed lasers are DFB lasers of the type EYP-DFB-xxxx-xxxx-1500-BFY12-000x with matching wavelengths. An external fiber isolator should be used between seed laser and amplifier in order to suppress backreflections that may disturb the emission spectrum of the seed laser and may cause mode-hops in case of wavelength tuning.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each tapered amplifier will come with an individual test protocol verifying the parameters given in this document.

This data sheet is subject to change without notice. © eagleyard Photonics

2022-01-10

Revision 1.01

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Distributor

amstechnologies

where technologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

TOPTICA

General Product Information

Product	Application
780 nm Tapered Amplifier	Spectroscopy
C-Mount Package	

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	Ts	°C	-40		85
Operational Temperature at Case (non cond.)	T _C	°C	0		50
Forward Current	I _F	А			5
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	W			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	5		40
Forward Current	I _F	А			4.5
Input Power	P _{input}	mW	10		50
Output Power	P _{opt}	W			3.0

Characteristics at T_{LD} = 25 °C at BOL

Parameter	Symbol	Unit	min	typ	max
Design Wavelength	λς	nm		780	
Gain Width (FWHM)	Δλ	nm		20	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.3	
Operational Current @ $P_{opt} = 3.0 W$	I _{op Gain}	А			4.5
Output Power	P _{opt}	W	3.0		
Amplification	G	dB		23	
Cavity length	L _C	μm		4000	

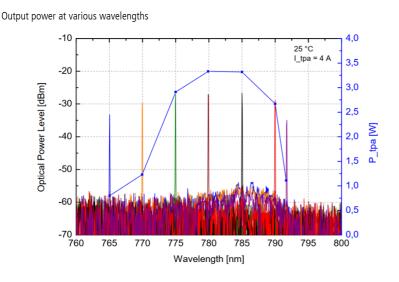
Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments
non condensing
with proper injection from a seed laser

Measurement Conditions / Comments

with proper injection from a seed laser	
at recommended maximum forward current	


Revision 1.01

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Characteristics at T_{LD} = 25 °C	Cat BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Reflectivity at Front Facet	R _{ff}			3.10-4	1.10-3
Reflectivity at Rear Facet	R _{rf}			3.10-4	1.10-3
Input Aperture (at rear side)	d _{in}	μm		3	
Output Aperture (at front side)	d _{out}	μm		210	
Astigmatism	А	μm		720	
Input Divergence parallel (1/e ²)	$\Theta_{\text{in} }$	0		23	
Input Divergence perpendicular (1/e ²)	$\Theta_{\text{in}\perp}$	0		40	
Output Divergence parallel (1/e ²)	$\Theta_{out }$	0		18	
Output Divergence perpendicular (1/e ²)	$\Theta_{\text{out}\perp}$	0		40	
Polarization				TM	

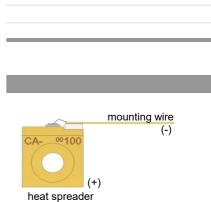
Measurement Conditions / Comments estimated at recommended maximum forward current E field perpendicular to junction plane

Typical Measurement Results

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

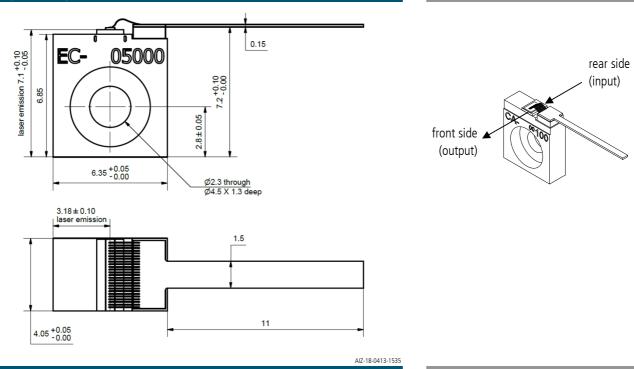
OPTICA

Revision 1.01


TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Package Dimensions					
Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h	mm	7.05	7.10	7.20
C-Mount Thickness	t	mm		4.05	

Package Pinout


Mounting Wire Housing

Cathode (-) Anode (+)

Measurement Conditions / Comments

Package Drawings

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

Revision 1.01

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Revision 0.92

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Distributor

info@amstechnologies.com

ΤΟΡΤΙCΑ

amstechnologies meet solutions

www.amstechnologies-webshop.com

Contact us 🛛 🖑

General Product Information

Product	Application
795 nm Tapered Amplifier	Spectroscopy
C-Mount Package	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	Ts	°C	-40		85
Operational Temperature at Case (non cond.)	T _C	°C	0		50
Forward Current	I _F	А			4.2
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	W			2.2

Recommended Operational Conditions

Symbol	Unit	min	typ	max
T _C	°C	5		40
I _F	А			4.0
P _{input}	mW	10		50
P _{opt}	W			2.0
	T _C I _F P _{input}	T _C °C I _F A P _{input} mW	T _C °C 5 I _F A P _{input} mW 10	T _C °C 5 I _F A P _{input} mW 10

Characteristics at T_{LD} = 25 °C at BOL

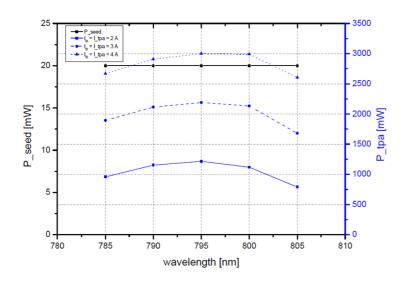
Parameter	Symbol	Unit	min	typ	max
Design Wavelength	λ _c	nm		795	
Gain Width (FWHM)	Δλ	nm		20	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.3	
Operational Current @ $P_{opt} = 2.0 W$	I _{op Gain}	А			4.0
Output Power	P _{opt}	W	2.0		
Amplification	G	dB		20	
Cavity length	L _C	μm		4000	

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments
non condensing
with proper injection from a seed laser

Measurement Conditions / Comments see images on page 4 with proper injection from a seed laser at recommended maximum forward current


Revision 0.92

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Characteristics at T_{LD} = 25 °C	Cat BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Reflectivity at Front Facet	R _{ff}			3.10-4	1.10-3
Reflectivity at Rear Facet	R _{rf}			3.10-4	1.10-3
Input Aperture (at rear side)	d _{in}	μm		3	
Output Aperture (at front side)	d _{out}	μm		210	
Astigmatism	А	μm		700	
Input Divergence parallel (1/e ²)	$\Theta_{\text{in} }$	o		23	
Input Divergence perpendicular (1/e ²)	$\Theta_{\text{in}\perp}$	0		42	
Output Divergence parallel (1/e ²)	Θ_{out}	0		17	
Output Divergence perpendicular (1/e ²)	$\Theta_{\text{out}\perp}$	0		42	
Polarization				TM	

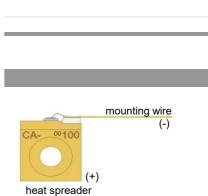
Measurement Conditions / Comments estimated at recommended maximum forward current E field perpendicular to junction plane

Typical Measurement Results

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

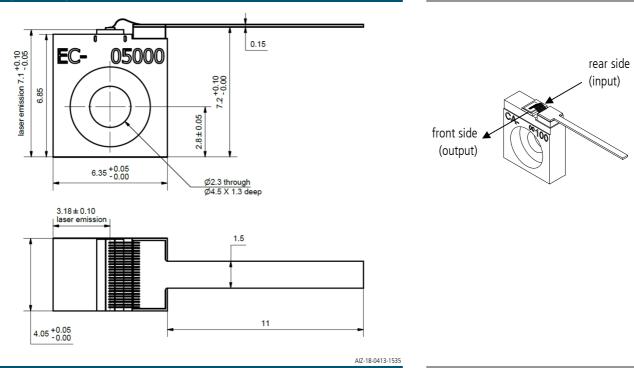
2019-08-01

Revision 0.92


TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Package Dimensions					
Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h	mm	7.05	7.10	7.20
C-Mount Thickness	t	mm		4.05	

Package Pinout


Mounting Wire Housing

Cathode (-) Anode (+)

Measurement Conditions / Comments

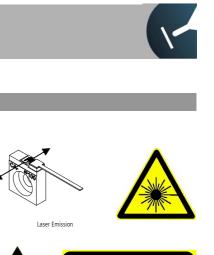
Package Drawings

Revision 0.92

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.


The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

INVISIBLE LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION

CLASS 4 LASER PRODUCT WAVELENGTH 795 nm MAX. OUTPUT POWER 2.2 W

OPTICA

